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Purpose. To characterize the pharmacokinetic/pharmacodynamic (PK/PD) properties of a new poly-
ethylene glycol (PEG) conjugate formulation of interferon (IFN)-f 1a following subcutaneous (SC)
administration in monkeys.

Methods. Single SC injections of 0.3, 1, and 3 million international units (MIU)/kg of PEG-IFN-B 1a
were administered to 3 groups of cynomolgus monkeys (n = 4 each). Plasma concentrations of drug and
neopterin, a classic biomarker for IFN-8 PD, were measured at various time-points after dosing. PK/PD
profiles were described by noncompartmental methods and pooled data by an integrated mathematical
model, where fixed and delayed concentration-time profiles were used as driving functions in an indirect
stimulatory response model.

Results. PEG-IFN-B 1a was rapidly absorbed, with peak concentrations observed at about 4-5 h.
Compared to previous identical SC doses of IFN-f 1a, administration of 1 and 3 MIU/kg of pegylated
drug resulted in 27- and 16-fold increases in area under the concentration-time curves. Neopterin
concentrations followed a typical dose-dependent biphasic pattern. Pooled PD profiles were well-
described by the PK/PD model, and the neopterin elimination rate (0.0190 h™') is consistent with
previous estimates.

Conclusions. The PEG-modification of IFN-B 1a provides enhanced drug exposure and similar phar-
macodynamics of neopterin compared to the unmodified formulation.

KEY WORDS: interferon-beta la; neopterin; pharmacodynamics; pharmacokinetics; polyethylene

glycol.

INTRODUCTION

A common difficulty associated with the use of proteins
as therapeutic agents is rapid systemic clearance. For ex-
ample, many cytokines are rapidly cleared from the circula-
tion by means of receptor-mediated endocytosis (1). During
the past two decades, protein conjugation with polyethylene
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ABBREVIATIONS: A, amount of drug in central compartment;
A,., amount of drug in SC administration site; A,, amount of drug in
non-specific binding compartment; k', first-order rate constant of
drug absorption to and elimination from central compartment; k,,
first-order rate constant of drug distribution from central to nonspe-
cific binding compartment; k,;, first-order rate constant of drug dis-
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constant of neopterin elimination; N, neopterin plasma concentra-
tion; N,, baseline or time-zero neopterin concentration; SCs,, drug
concentration producing 50% of S,,..; Smax» capacity factor for drug
stimulation of k;,; T, pharmacodynamic time-lag; V/F, volume of dis-
tribution of PEG-IFN-B 1a corrected for bioavailability.
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glycol (PEG) has shown promise in overcoming this compli-
cation (2). Such a chemical modification usually causes a re-
duction in protein recognition by elimination mechanisms and
can have considerable effects on the pharmacokinetics (PK)
and pharmacodynamics (PD) of proteins (3).

Interferon (IFN)-B 1a is a therapeutic cytokine currently
indicated for the treatment of multiple sclerosis and exhibits
a relatively short plasma half-life. A PEG-modified form of
IFN-B 1la has been reported (4), and was shown to provide
enhanced plasma pharmacokinetic profiles in monkeys, rats,
and mice. The in vivo pharmacological response to PEG- and
unmodified-IFN-B la exposure was evaluated from drug-
induced increases in plasma neopterin concentrations in mon-
keys, revealing comparable pharmacodynamics or preserved
bioactivity between formulations. Here we provide further
evidence of the improved PK and conserved PD properties of
a novel PEG-IFN-B la conjugate in monkeys, along with a
minimal model to characterize the PK/PD profiles resulting
from the administration of single ascending subcutaneous
(SC) doses.

METHODS

Animals

This study was conducted in adherence with the “Prin-
ciples of Laboratory Animal Care” (NIH Publication No. 85-
23, revised in 1985). Twelve Macaca fascicularis (Cynomol-
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gus) monkeys were clearly identified and received a standard-
ized diet during a period of acclimation. Animals were in
good health at the time of the study.

Experimental

Three groups of 4 monkeys received single SC bolus in-
jections of 0.3, 1, or 3 million international units (MIU)/kg of
a 40-kDa PEG-IFN-B conjugate, in which a branched PEG
molecule comprising two 20-kDa moieties is bound to residue
Cys-17 of IFN-B la. Following drug administration, blood
samples were collected and plasma drug concentrations were
determined at 0.5, 1, 2, 4, 8, 12, 24, 48, 72, 96, and 120 h using
a commercially available ELISA kit (Toray Industries, To-
kyo, Japan) validated for monkey plasma (lower limit of
quantification was 10 IU/ml). Plasma neopterin concentra-
tions were measured at 0, 6, 12, 24, 48, 96, 120, 168, 216, 264,
and 336 h after dosing using a radioimmunoassay kit (ICN
Biomedicals, Costa Mesa, CA, USA) validated for monkey
plasma (quantification limit was 0.5 ng/ml).

PK/PD Model and Data Analysis

Individual drug concentration-time profiles were first
analyzed using standard noncompartmental techniques (Win-
Nonlin v2.1, Pharsight Corp., Apex, NC, USA) to determine
whether drug exposure was proportional to dose (linear phar-
macokinetics). An integrated PK/PD model for the SC ad-
ministration of PEG-IFN-B 1la is shown in Fig. 1. The time-
course of pooled drug concentrations was modeled first ac-
cording to the following system of differential equations:
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Fig. 1. Minimal PK/PD model of PEG-IFN-B 1la following single
ascending SC doses in monkeys. The PK component resembles a
standard linear two-compartment model with a single first-order rate
constant for absorption to and elimination from the central compart-
ment (k'). The PD model is a modified stimulatory indirect response
model (5), where the driving function (PK) is delayed by a time-lag
parameter (7).
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where the symbols are defined in the abbreviations section
and drug concentrations (C,) are set equal to A /(V/F). Re-
ported concentrations just below the quantification limit were
retained in the analysis. The unknown parameters estimated
from model fitting were k', k,,, k,;, and V/F. The initial con-
dition of Eq. 1 is the SC dose (D,.), whereas the initial con-
ditions of Egs. 2 and 3 are zero.

The pharmacodynamic component of the model is an
indirect stimulatory response model (5) driven by fixed phar-
macokinetic profiles (Egs. 1-3), delayed in time by a time-lag
parameter (7). Pooled plasma neopterin concentrations (N)
were thus described using the following equation:

dN

E: kin : S(t) - kout ‘N (4)

where the stimulatory function is given by,

Smax ) Cp(t - T)

SO=1+5c v

®)
and parameter symbols are defined in the Abbreviations. The
initial condition of Eq. 4 (N,) was assumed to be stationary
(ie., ki, = Ny - koyy), leaving kg, Spaxs SCsos Ny, and 7 as
unknown parameters to be estimated.

All PK/PD parameters were estimated by nonlinear re-
gression analysis using the maximum likelihood estimator in
ADAPT II (6). Methods of obtaining initial parameter values
have been described elsewhere (7). A standard variance
model was implemented as defined by:

VAR(C,,N)=07 - Y2 (6)

where o; are the variance model parameters (separate param-
eters were used for PK and PD measures) and Y represents a
matrix of model predicted values.

RESULTS AND DISCUSSION

The PK/PD properties of IFN-3 1a following intravenous
(IV) and SC administration in monkeys have been recently
reported (8). The unmodified formulation resulted in signifi-
cant nonlinear pharmacokinetics, with full characterization
requiring an integrated PK/PD model based upon pharmaco-
logical target-mediated drug disposition (9). Although SC ad-
ministration of 1.0 and 3.0 MIU/kg provided prolonged ex-
posure of IFN-B 1a and similar effects on neopterin as com-
pared to similar IV doses, total drug exposure was lower
(incomplete bioavailability) and plasma concentrations were
below the quantification limit after 48 h.

In this study, the PK/PD properties of SC administered
40 kDa-PEG-IFN-B 1a were evaluated in monkeys, typically
used to assess the in vivo activity of this drug owing to their
ability to respond to human IFN-B 1a (4,8). The pooled con-
centration-time profiles of PEG-IFN-B 1a are shown in Fig. 2
(top panel) and the mean parameters from the non-
compartmental analysis are listed in Table I. After SC ad-
ministration, PEG-IFN-B 1a was rapidly absorbed with peak
concentrations occurring around 4 to 5 h. The terminal elim-
ination phase of the 0.3 MIU/kg dose appeared mono-
exponential, whereas concentrations from the 1.0 and 3.0
MIU/kg doses decreased in a poly-exponential manner. How-
ever, plasma drug concentrations declined below the quanti-
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Fig. 2. Time course of pooled PEG-IFN-B 1a (top) and neopterin
(bottom) concentrations following single SC doses of 0.3 (@), 1.0 (O),
and 3.0 (A) MIU/kg in monkeys. Inset graph in the bottom panel
shows the first 25 h of neopterin concentrations. Symbols are mea-
sured concentrations, and lines represent model-fitted profiles.

fication limit sooner for the lowest dose, potentially masking
the terminal phase and resulting in under-estimated areas un-
der the concentration-time curves (AUC) and overestimated
clearance values. Although total systemic clearance seemed
higher for the lowest dose, differences in clearance values
were not statistically significant (one-way ANOVA, p =
0.121). In contrast to unmodified IFN-B 1a, calculated AUC
values were linearly related to dose (r = 0.98, p < 0.0001),
suggesting that the pharmacokinetics of PEG-IFN-B 1a are
linear in this dosage range. Compared to the same SC doses
of IFN-B 1a (8), 1.0 and 3.0 MIU/kg of PEG-IFN-@ 1a yielded
approximately 27- and 16-fold increases in AUC values, along
with 54- and 13-fold higher maximum plasma drug concen-
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trations. Pepinsky et al. similarly reported a 9-fold increase in
AUC and a 4-fold increase in C,,,, values, comparing 1.0
MIU/kg SC doses of unmodified- and PEG-IFN-B 1la (4).
However, comparisons with this study must be made cau-
tiously as a different PEG-conjugate was used (N-terminally
linked 20 kDa PEG moiety). Furthermore, drug concentra-
tions were determined using an antiviral bioassay, whereas a
more specific immunoassay was used in the present analysis.

Pharmacokinetic profiles were reasonably described us-
ing a linear two-compartment model; however, peak concen-
trations for the 1.0 MIU/kg dose were slightly under-
predicted (Fig. 2, top panel). A model with separate first-
order absorption and elimination rates was tried, but these
were replaced with a single rate constant, as these values were
routinely estimated to be similar. This allowed for a reduction
in the number of model parameters and improved the iden-
tifiability and precision of their estimation (Table II). Inter-
estingly, a single absorption and elimination rate constant was
also used with a one-compartment open model to describe the
PK profiles of IFN-a 2a and PEG-IFN-a 2a after SC dosing in
healthy adult male subjects (10).

Binding of IFN-B with its cell surface receptor initiates a
cascade of intracellular events resulting in the induction of
several biomarkers including neopterin and B2-microglobulin
plasma concentrations, and intracellular 2',5'-oligodenylate
synthetase activity. More specifically, IFN- is thought to
stimulate GTP-cyclohydrolase I, which catalyzes the conver-
sion of GTP to a neopterin precursor (neopterin triphos-
phate). Once formed, neopterin is eliminated primarily via
renal excretion. These molecular processes can take time to
manifest and form the basis for the approximately 5 to 6 h
time-lag observed prior to the increase in neopterin concen-
trations. The time-course of pooled plasma neopterin concen-
trations following SC administration of PEG-IFN-B 1la is
shown in Fig. 2 (bottom panel). After the time-lag, neopterin
concentrations increase to peak values around 24 h after dos-
ing and then gradually return to baseline.

Pooled neopterin pharmacodynamic profiles were well
characterized by the PK/PD model (Fig. 2, bottom panel) and
the estimated pharmacodynamic parameters are listed in
Table II. The estimated elimination rate constant for neop-
terin (k,,, = 0.0190 h™') is in agreement with our previous
estimate of 0.0184 h™ (8). A stimulatory indirect response
model has been applied previously to describe the induction
of MX protein by IFN-a 2a and a pegylated derivative (10),
which is also initiated by drug binding to the common IFN-
o/B receptor. However, the time-lag prior to the onset of
effect required a modification to this standard indirect re-
sponse model. Our previous pharmacodynamic model for
neopterin induction by unmodified IFN-( 1a included a trans-
duction compartment and a precursor-dependent indirect re-
sponse model to account for the onset delay, which has a
mechanistic basis (8). These more complex models were ap-
plied to the current data set but were not supported by stan-
dard model fitting criteria (e.g., additional rate constants in
these models were not readily identifiable). A pharmacody-
namic time-lag parameter was thus used as a substitute for
precursor or transduction compartments, providing a simpli-
fied model for which good precision on parameter estimates
was achieved (Table IT). The concept of utilizing delayed drug
concentrations as a pharmacodynamic driving function has
been described for modeling the antiviral effects of PEG-
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Table I. Noncompartmental Pharmacokinetic Parameters of PEG-IFN-$ 1a in Monkeys

Dose T Conas Tions AUC CL/F MRT
(MIU/kg) (h) (IU/ml - 10°) (h) (IU - h/ml - 10%) (ml-h'-kgh) (h)
03 4 0.400 3.89 313 121 7.23

. (0.114) (0.82) (1.39) (78) (0.86)

1.0 4 2.59 9.56 19.8 511 8.15

—a (0.17) (5.52) 2.5) (6.6) (1.20)

3.0 5 432 21.0 473 63.9 102
(4-8) (1.01) (7.1) (5.3) (6.4) (1.4)

Values are reported as the mean (SD) of individual estimates (n = 4 each), except for T,,,, where median (range) values are given. T,,,, and

C

max>

time and value of maximum plasma concentration; T}, ,,, terminal elimination half-life; AUC; area under plasma concentration-time

curve extrapolated to infinity; CL/F, total systemic clearance corrected for bioavailability; MRT, mean residence time.

“ Values were identical for all animals.

IFN-a 2b (11). Although typically requiring the use of delay-
differential equations, such a time-lag can be readily achieved
by delaying the timing of the dosing event in ADAPT (6).
The time-lag parameter (1) was estimated to be 5.05 h and
corresponds with visual inspection of the dynamic profiles
from both formulations (see Fig. 2 and Ref. 8), suggesting that
PEG-modification does not alter the temporal aspects of ei-
ther signal transduction (12) or functioning of a precursor
compartment (8). The relatively large stimulatory capacity
factor (S,,.. = 72.4) appears to be countered by a large SCs,
value (relative to plasma drug concentrations), resulting in
net pharmacological effects that are similar to those produced
by unmodified IFN-B 1a (8). Similar findings have been re-
ported when comparing single doses of unmodified and pe-
gylated IFN-B 1la (4), IFN-a 2a (10), and IFN-a 2b (13). Al-
though decreased potential for immunogenicity may exist for
use in humans, antibody formation was observed in monkeys
(data not shown) and has also been reported for other PEG-
IFN-B 1a conjugates (4).

In summary, the PEG-modification of IFN-3 1a provides
enhanced drug exposure and comparable pharmacodynamics.
An indirect response PK/PD model driven by delayed drug
concentrations was proposed and well characterized the ef-
fects of the drug following single ascending doses in monkeys.
Further studies are needed to ascertain whether PEG-IFN-
la provides any clinical therapeutic advantages over existing
drug formulations.

Table II. Estimated PK/PD Model Parameters of PEG-IFN-B la

in Monkeys
Parameter
(units) Estimate CV%

Pharmacokinetics

ki, (b7 0.0162 20

kay (") 0.0311 15

k' (h™h) 0.240 33

V/F (ml/kg) 338 6.9
Pharmacodynamics

S max 72.4 25

SCso (IU/ml - 10%) 1.32 38

ko (h71) 0.0190 8.8

N, (ng/ml) 1.34 7.8

7 (h) 5.05 72

Pooled PK and PD data were modeled separately as described in text.
CV % values are of the model estimates and unrelated to inter-animal

variability.
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